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Algebraic Spinors and Directed Random Walks in the
McKane—-Parisi—Sourlas Theorem

Suemi Rodriguez-Romo'?
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We present the Dirac propagator as a random walk on an §°~! sphere for
Majorana spinors, even spinor space, Dirac spinors, and Chevalley-
Crumeyrolle spinors built from Minkowski space. We propose the Dirac
propagator constructed from Chevalley—-Crumeyrolle spinors as the generators
of a Markov process such that McKane~Parisi-Sourlas theorem can be applied
to calculate the expectation values for functions of local times.

1. INTRODUCTION

The Dirac propagator can be represented as a continuum limit of a
discrete directed random walk in which the directions of consecutive steps
are correlated by appropriate rotation matrices (Jacobson, 1984, 1985;
Ambjern et al, 1990). In this paper we generalize this concept using
algebraic spinors defined on Minkowski space-time.

We describe Dirac propagators in terms of random variations of path
direction and position, simultaneously. Thus, we deal with a random walk
on a sphere of tangent vectors.

The equivalence between this random walk and the correspondmg
path integral formula has been well established in the Euclidean case
(Jaroszewicz and Kurzepa, 1991).

In the case of Chevalley-Crumeyrolle algebraic spinors, the intro-
duction of a new isotropic basis allows us to use them as the inverse of the
generator of a Markov process. Therefore, the McKane-Parisi—Sourlas
theorem can be used. In our approach even the Green function is valued
in Grassmann algebra.
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2. DIRECTED RANDOM WALK REPRESENTATION

Let us write the Dirac propagator (in momentum space) in D-dimen-
sional space for a fixed length of the path L as follow (Jaroszewicz and
Kurzepa, 1991):

__l—zro (L) iy -p(L/D) L 1)
m—iy-p Jo D
for a fermion of mass m and momentum p. Here {y,}, u=0,...,D—1,is

the set of generators of a 2°-dimensional Clifford algebra.
On the other hand we know that

e PLID) — fim <1+ iL " )
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and we can write (Jaroszewicz and Kurzepa, 1991)
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with ne S” ! and the invariant measure on the sphere S? ! is normalized
such that

Jdn=2 (4)

We have figured out the propagator of a Dirac particle as described in
terms of the path length L and a local propagation direction, ie., a unit
vector tangent to the path,

dx(l)
() == (5)
where /€ [0, L] parametrizes the path.

In addition, by construction of the 2°-dimensional Clifford algebra
generated by {y,}, the so-called projection operator can be generalized to
the primitive idempotent of the algebra.

The left minimal ideals defined by the primitive idempotent of the
Clifford algebra are the algebraic spinors &(p, q¢). We can locally choose
the algebraic spinorial basis of the D-dimensional left minimal ideal, so
from (3) and (2) we get

N L N
e PP = lim j I dnkf(nk)<1+iﬁp-n> (6)
k=1

N—> oo
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where we have discretized the unit vectors tangent to the path and f(n,)
is the primitive idempotent constructed on the fiber over n, € S”~ !, In the
limit N — oo and from (6) it follows that

D
d”p o= ip (X' = X) oy -p(LID)
(2n)*
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For Minkowski space-time we present the following particular cases
for the R.H.S. of equation (7):

a. Majorana Spinors. Here we have

N —

d°p . a :
i —ip(X'—X) HL/N)p g
m f(Zﬁ)De Jkll dnie
1
X2—N [1 + {9394(1 +€1)+€1}71N]
X ~~-X[1+{€3e4(1+el)+el}n1] (8)

where hereafter {e;, e,, €5, e,} is the orthogonal basis for the Minkowski
space-time, such that e? =e} =e;= —e; = 1. Equation (8) is constructed as
an operator over %(3, 1), the Clifford algebra generated by Minkowski
space-time. In this case the idempotent of the algebra has been chosen as
(Bugajska, 1986)

fME{%(1+el)%(1+e3e4)} %)

b. Even Spinor Space. Here

d%p a _
lim e P X =X di, e LN Pk
Nmf(zn)f’ JEI k
1
xz—N(1+e3e4nN)x <X (T +ezeuny) (10)

is constructed as an operator over ¥%(3, 1), ie., the even subalgebra of
#(3,1). In this case the idempotent of the algebra has been chosen as
(Bugajska, 1986)

f5=%(1+e3e4) (11)
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¢. Dirac Spinors. Here

D

lim J d7p e*iP%X"X)J IN] dny, e ENI P
N — (27‘[)0 Pl

1
X"va [1+4 {ejes(1+e))+e }ny]

X oo x[1+ {eses(1+e;)+e,}n] (12)

is constructed as an operator over the €¢(3, 1) algebra, which means that
we can consider the Dirac spinors as elements of the left minimal ideal of
%(4, 1), because the complexified €(3, 1) algebra [¥¢(3, 1)] is isomorphic
to €(4, 1). In other words, Minkowski space-time can be considered as a
subspace of the space spanned by {e,, e,, €5, €3, €,} and we can use the
same idempotent of the algebra as in the case of Majorana spinors.

d. Chevalley—Crumeyrolle Spinor Space. Here

de ) , N )
1 —ip (X' — X) i(L/N}Yp-ng
Jm J 2n)? f ,El dny e
1 .
XzTV[(e1“iez)(e3—e4)’1N] X - x[(e;—iey)(es—eq)n] (13)

is constructed as an operator over the (3, 1) algebra generated by the
{e., e, €5, e,} basis. In this case the idempotent of the algebra used is

See=1ile,—ie;)(es—ey) (14)
The scalar products on the spinor space &(p, q) are defined as the maps
()2 P, q)xL(p,q) > F, where F=f%(3,1)f.

The identity and the reflection on the Minkowski space-time induce
antinvolutions of the associated Clifford algebra (3, 1). They are usually
denoted by . and f_, respectively.

We define the scalar products (-,-), according to the following
formula;

W o),=0,B.(0)e, Y, 0L (p,q) (15)

where w € 4(3, 1), such that 0, B, (o' =/
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Thus, we can rewrite the R.H.S. of (7) as

d®p N
lim a)Nf e*fﬂ’(x'*)ﬁf dn, e (L/NY P
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The transition function is defined-as follows:

Py, ny_1)=Lny) B ((ny 1)) (17)

From the properties of (3, 1), P has the composition property
[ dn Py, ) P, ny) = Py, my) (18)

We interpret (17) as the probability of going from the direction given
by n,_, to the one given by n,. So, (16) is equivalent to

d®p N
lim cuNj e"iP'(X'*X)J [T dn oI (LIN) P -1k
N—> oo * (27[)0 Pl k

Xﬂi(C(nN))P(nN’nN~l)' - Py, ny) L(ny) (19)

Carrying out the integration over p, we get

fim oY [ [T dn B ((012)) Py, ny 1)« - - Py, my) {(ny)
k=1

N -

xéu(X’—X—L/N g nk> (20)

If we apply the operators {(ny) and B({(n,)) to the right and left sides of
(20), respectively, we get the propagator of a Dirac particle subject to the
constraint f{(n;)=0. Namely

G(L; X',n'; X, n)

N-ow

N L N
= lim w’ij [ dne P(n', ny) - - -P(nl,n)5D<X’-X——— y ”k) (21)
k=1 N, =

which describes propagation of a fermion starting at the point X in the
direction n and arriving at X’ in the direction »’ after moving in a path of
length L.

Let us stress that the differences between consecutive values of n; are
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in no sense small and (21) can be understood as the convolution (over
position X; and directions n;) of N propagators, for path lengths L/N for
each of them.

3. MCKANE, PARISI, SOURLAS THEOREM

We think that the Dirac propagator, as a directed random walk
constructed in the exterior or Grassmann algebra defined by the space of
Chevalley—Crumeyrolle spinors, can be used to define the generator of a
Markov process. Moreover, we can use the McKane—-Parisi-Sourlas
theorem (McKane, 1980; Parisi and Sourlas, 1979, 1980) to calculate
expectation values of functions of local times in a random walk as a
Gaussian integral of Grassmann valued fields where even the Green
function is a Grassmann field.

Let GY(L; X', n’; X, n) be the generator of a Markov process; then
exp[ —tG~'(L; X', n’; X, n)] is the semigroup of transition probabilities for
the process, so the McKane-Parisi-Sourlas theorem reads

oC lAbil//j
j dt E(F(t')1,0,_| w(0)=i)=jduc(q>)F(q>2_) or
0 @0,

where G=G(L; X', n’; X, n), t is time, i and j are the initial and final steps

of the walk, and 7’ is the set of local times spent in each step of the walk.

Moreover, ® is a field defined in each step of the walk like ®*=

(#3,...,6%) and ®?=,p,+ Y. ,, where ¢, and @, are complex-valued

functions and v, and ¥, are Grassmann ones.

Finally, F(r) is defined such that

|F(z")] <const-exp<—bz t,-) forsome 5>0
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